Food Science and Nutrition Research Department, National Research Centre, Dokki, Cairo (Egypt)

Protein-rich food mixtures for feeding the young in Egypt 1. Formulation

S. R. Morcos, Z. Elhawary, and G. N. Gabrial

(Received August 28, 1981)

Considerable amount of work has been carried out during recent years on the development of protein-rich food mixtures for feeding the young in developing countries (1–8). All food mixtures prepared by different authors use, in one way or another, milk or one of its products as the main source of protein in their preparations. In Egypt, as in many other developing countries, the production of milk is not sufficient to supply the needs of the population (9, 10). Milk production is seasonal, it is not available at least for some time during the year. For that reason, efforts have been made to use protein-rich vegetables in preparation of food mixtures suitable for feeding infants and pre-school children (9–12).

Inspite of the fact that so many formulae of protein-rich food mixtures were suggested by many schools, none of them were commercially successful, either because they are not formed from available foods, which are within the economic abilities of the populations, or they are not acceptable by mothers and children and are not in agreement with the existing food habits.

Trials were made for the preparation of food mixtures based on popular dishes that are easily prepared and well liked by most of the Egyptians. An example of such recipes are Fayesh, Belila, Kishk and Koshari. These popular dishes together with other legumes and cereals were introduced in our designed food mixtures. The following nutritional studies were undertaken on such mixtures.

Experimental Materials and methods

The ingredients used in this study are: cereals including rice and wheat; legumes including lentils, chick pea; fenugreek, soybean and sunflower; oil seeds such as sesame and peanut flour; tubers: potato flakes; skim milk and yeast.

Some of our ingredients were either cooked or processed before use. These are polished rice, decorticated lentils and chick peas.

Cooking in water was done in a pressure cooker. Rice and wheat were cooked for 10 minutes, lentils for 20 minutes and chickpeas for 30 minutes. The cooked ingredients were left to cool, spread on trays at one centimeter depth, then left to

dry in an air-drying oven at 60°C till dry. The chickpea seeds were dropped in boiling water for 2 minutes before cooking in order to remove the seed coat.

After cooking and drying, all ingredients were ground to fine powder in a mechanical grinder and stored in polyethene bags for analysis and for use in preparation of mixtures.

Lime roasted chickpeas were purchased from the local market. It has a golden yellow colour, rich in protein and calcium.

Peanut seeds were also purchased from the local market. They were roasted in drying oven at a low temperature, then left to cool. Peanut kernels (decorticated seeds) were ground into a thick paste using an electric blender. The peanut butter obtained was pressed in a hydraulic press to get rid of most of the oil. The dry cake obtained was washed several times with ether. A fine peanut flour was obtained, left in air for one hour, then a current of hot air was passed over the defatted peanut flour till it became free from any traces of ether.

Crushed sesame seeds (tehena or sesame porate) were purchased from the local market. Oil was separated from tehena by filtering it through a Buchner funnel using vacuum. The cake was pressed in a hydraulic press. Oil left in the cakes was removed, and sesame flour was prepared as described before in the preparation of the peanut flour.

Other food commodities used in preparation of protein-rich food mixtures

Among the popular dry food commodities used in our study are Kishk and Fayesh. They are rich in protein and are consumed by a large sector of the population. Kishk and Fayesh were home-made especially for our work.

Kishk is a fermented wheat-milk mixture, very common in most of the Arab world. It is a very popular food in upper Egypt. It is made of Laban Zeer (condensed sour milk) and wheat grains. The method of preparation of Kishk is described before by Morcos (13).

Fayesh is a home-made popular cake used in upper Egypt. It is prepared from white wheat flour, milk powder and fat.

Determination of macronutrients

The following analyses were undertaken on each one of the ingredients used in the preparation of all the food mixtures. Moisture, protein, fat, ash, fiber, calcium, phosphorus and iron were determined according to the O.A.A.C. (14). Total carbohydrates were determined by difference.

Determination of amino acids

The amino acid patterns and contents of each of the test ingredients were determined after being hydrolysed with 6N-HCl, according to Khan and Baker (15). Measured amounts of the acid hydrolysates were spotted on Whatman No. 1 filter paper. Ascending paper chromatography technique was carried out using the buffered method of Levey and Chung (16). Under these conditions of hydrolysis, tryptophan was completely oxidised, and cystein and methionine so damaged that accurate estimation of these amino acids following hydrolysis was impossible. This effect of protein hydrolysis in the presence of large quantities of carbohydrates has been noticed by Lewis (17, 18), who observed that methionine was partially oxidised to its sulphoxides and cystine almost completely lost. The loss of cystine is possibly due to its combination with reducing sugars, consequently methionine, cystine and tryptophan have had to be assayed separately by different techniques.

Cystine and methionine were oxidised with performic acid, then determined according to the method of Jamalian and Pellet (19). The colorimetric method of Blauthi, Charezinski and Berbec (20), was followed for estimation of tryptophan in the alkali hydrolysate.

Ten protein-rich baby food mixtures, AN_{70} , AN_{71} ----- AN_{79} were formulated on the basis of the analysis of the ingredients. The macronutrients of the suggested mixtures were also determined. The prepared formulated food mixtures were stored in polyethane bags under refrigeration for further nutritional studies (table 1).

Results

Table 1 shows the macronutrients content of raw ingredients. Dry yeast contains the highest percentage of protein (43.0 %), while rice contains the lowest amount of protein. Legumes come in between where their protein content ranges from 33.5 % in soybean to 19.0 % in chick pea. Table 2 shows the macronutrients content of cooked ingredients. Tables 3, 4 and 5 show the contents of roasted ingredients (peanut, chick pea and sesame) and the prepared ingredients (Fayesh and Kishk). Table 6 shows the essential amino acid content of different ingredients used in the formulation of our protein-rich food mixtures. Sesame flour is rich in sulphurcontaining amino acids (289 mg/gN). Parboiled wheat and sesame are the poorest sources of lysine. Table 7 shows the macronutrients content of the formulated food mixtures. Their protein content ranges from 23.2 % to 17.7 %.

Discussion

For the preparation of our food mixtures some legumes and only seeds commonly cultivated in the country were used. The mixtures were prepared on the basis of the fact that legumes are deficient in sulphurcontaining amino acids (methionone and cystine), whereas cereals are deficient in lysine. Mixing legumes with cereals raised the nutritive value of the mixtures. It was found that treatment of such protein sources by heat either through boiling, roasting, cooking or autoclaving caused a marked improvement in their taste. Some of the ingredients used in the formulation of the food mixtures were heat-treated before being used in order to get rid of their antinutritional factors, to raise their digestibility and to make their constituent amino acids more available as it was advised before (21–25). This was confirmed by the preliminary panel test.

Chemical analysis proved that such treatments have little effect on the percentage of nutrients found in these ingredients, which is in accordance with the results reached before (26, 27). The protein content of our formulated mixtures ranged from 17.7 to 23.2 g %, which is in agreement with the recommendations of The United Nations for the protein requirements for children (28).

Concerning the protein quality of our formulated food mixtures, they are considered to be a supplement to the ordinary diet given to the children in Egypt, which is poor in protein. Defatted sesame flour was incorporated in all the formulated mixtures in order to raise their level of sulphur-containing amino acids and to make their pattern of amino acids near to the provisional amino acid pattern recommended by the FAO (29), as it is already known that sesame flour is the richest source of sulphur-containing amino acids in all seeds.

Table 1. Formulated protein-rich food mixtures.

No.	Mixture	Ingredients	g/100 g
1	AN 70	Polished rice	40
		Decorticated lentils, cooked	30
		Defatted sesame flour	20
		Skimmed milk powder	10
2	AN 71	Polished rice	35
		Roasted chick peas, dehulled	30
		Maize flour	10
		Defatted sesame flour	10
		Skimmed milk powder	15
3	AN 72	Parboiled wheat	60
		Roasted chick peas, dehulled	18
		Dry yeast	2
		Defatted sesame flour	10
		Skimmed milk powder	10
4	AN 73	Fayesh	60
		Roasted chick peas, dehulled	20
		Defatted sesame flour	10
		Skimmed milk powder	10
5	AN 74	Fayesh	70
		Defatted soy flour	10
		Defatted sesame flour	10
		Skimmed milk powder	10
6	AN 75	Parboiled wheat	. 50
		Cooked chick peas	20
		Defatted sun flower kernels	10
		Defatted sesame flour	10
		Skimmed milk powder	10
7	AN 70	Fayesh	30
		Cooked decorticated lentils	15
		Cooked polished rice	20
		Cooked chick peas	15
		Defatted sesame flour	20
8	AN 77	Cooked dried potato flakes	40
		Cooked chick peas	20
		Defatted sesame flour	30
		Skimmed milk powder	10
9	AN 78	Maize bread containing 5% fenugreek flour	50
		Defatted soy flour	25
		Dry yeast	5
		Skimmed milk powder	
10	AN 79	Kisk	50
		Maize flour baked with	20
		Fenugreek flour	15
		Cooked decorticated lentils	5
		Skimmed milk powder	10

Table 2. Ma	acronutrients	of	raw	ingredients	š.
-------------	---------------	----	-----	-------------	----

Sample	Moist g%	Prot. g%	Fat g%	Ash g%	Fibre g%	Carbo. g%		Phosp. mg%	Iron mg- %
Lentils	9.5	24.13	1.10	2.10	1.40	61.77	80	280	7.1
Rice	8.0	6.70	0.41	0.50	0.50	83.89	76	111	1.5
Chick peas	9.3	19.00	4.90	2.70	4.40	59.70	151	277	7.5
Sunflower seeds	5.2	25.00	52.40	4.30	4.20	8.90	125	840	5.7
Fenugreek	7.0	29.00	4.90	3.27	7.20	48.03	186	420	22.0
Soy beans	10.2	33.50	20.30	4.80	5.10	26.00	209	605	6.5
Maize	10.0	10.00	4.50	1.12	2.00	73.30	12	245	2.0
Whole wheat	10.2	11.50	2.00	1.29	2.60	72.41	30	320	3.5
Skimmed milk	3.0	35.90	0.80	8.00	0.00	52.30	1.3	1.0	0.6
Dry yeast	9.62	43.03	0.15	4.88	0.00	42.32	44	1.3	16.1

Table 3. Macronutrients of cooked ingredients.

Sample	Moist. g%	Prot.	Fat g%	Ash g%	Fibre g%	Carbo. g%		Phosp. mg%	Iron mg%
Parboiled wheat	9.0	11.55	1.4	1.4	1.7	74.95	30	319	4.7
Rice	9.3	7.10	0.7	0.20	0.4	82.26	75	95	1.6
Chick peas	5.3	22.10	5.7	2.3	1.6	63.05	114	387	5.8
Lentils	5.3	23.50	1.2	2.2	1.3	66.40	78	285	7.0
Dried potato flakes	11.2	12.10	0.4	2.1	1.7	72.30	55	120	6.0

Table 4. Macronutrients in roasted ingredients.

Sample	Peanut	Chick peas	Sesame
Moisture g%	1.3	3.5	0.8
Protein g%	27.0	23.9	20.0
Fat g%	45.6	6.1	50.3
Ash g%	2.3	3.2	1.3
Fibre g%	3.0	2.8	5.0
Carbohydrates g%	20.8	60.6	22.6
Calcium mg%	50.0	649.0	1,500.0
Phosphorus mg%	376.0	637.0	614.0
Iron mg%	2.5	9.7	10.0

Table 5. Macronutrients in the special commodities (Fayesh and Kishk).

Sample	Fayesh	Kishk	
Moisture g%	5.5	7.8	
Protein g%	13.4	21.6	
Fat g%	8.2	6.9	
Ash g%	2.2	8.2	
Fibre g%	2.4	2.5	
Carbohydrates g%	68.3	53.0	
Calcium mg%	170.0	54.0	
Phosphorus mg%	570.0	412.0	
Iron mg%	3.2	3.7	

Table 6. The amino acid composition of different ingredients used in the preparation of formulated mixtures (mg/g N).

	7									,
Ingredient	Leucine + isoleuc.	Lysine	Phenyl- alanine	Tyrosine	Cystine	Methio- nine	Total S.A.A.	Threo- nine	Trypto- phan	Valine
Polished rice	776	226	303	200	96	133	229	207	84	361
Potato flakes	613	299	251	81	37	81	118	235	103	292
Lentils	747	449	327	204	57	50	107	248	90	313
Chick peas	745	428	358	183	74	65	139	235	54	338
Skim milk	949	453	303	311	59	161	220	263	89	402
Whole wheat	621	179	282	187	159	94	253	183	89	276
Parboiled wheat	602	161	253	183	120	66	219	177	99	244
Yeast	865	565	303	259	56	100	156	340	69	459
White bread	899	130	304	145	159	91	250	168	29	258
Sesame	645	171	277	195	113	176	289	223	84	288
Fenugreek	669	362	251	183	87	74	161	205	115	241
Soy flour	770	399	309	196	83	79	162	241	80	300
Sunflower	899	225	278	118	93	119	212	230	85	317
Kishk	785	310	292	249	109	122	240	223	79	344
Fayesh	685	234	287	212	139	107	246	200	72	275

Nutrients	AN 70	AN 71	AN 72	AN 73	AN 74	AN 75	AN 76	AN 77	AN 78	AN 79
g/100 g										
Moisture	6.8	6.2	6.6	5.1	5.6	5.8	6.2	5.4	6.8	6.3
Nitrogen	3.3	3.1	3.2	3.1	2.8	3.3	3.1	3.2	3.7	3.3
Protein	20.5	19.1	19.8	19.1	17.7	20.6	19.5	19.8	23.2	20.7
Fat	5.4	5.6	6.1	5.9	6.3	7.1	7.2	5.1	5.2	8.4
Ash	2.6	2.8	2.3	2.9	2.7	3.0	2.2	3.4	2.8	4.0
Fibre	2.1	1.8	2.0	1.9	2.3	2.2	2.1	2.6	2.0	2.3
Carbo-										
hydrates ¹	62.6	62.5	63.2	65.1	65.4	66.3	62.2	63.7	60.0	58.3
mg/100 g										
Calcium	219	350	342	515	318	405	231	428	438	354
Phosphorus	320	414	500	705	612	425	231	433	458	331
Iron	5.1	5.4	6.1	6.8	3.2	4.8	4.8	6.7	4.1	5.2
cal/100 g ²										
F. energy	389	384	395	399	386	427	400	389	388	401

Table 7. Macronutrients present in formulated mixtures.

Summary

Ten protein-rich food mixtures were suggested. They are based on popular dishes which could be prepared simply at home. Such mixtures were prepared from seeds or legumes available in the local markets at reasonable prices. These ingredients are polished rice, decorticated lentils, defatted sesame flour, whole or roasted chick peas (dehulled), maize bread, sun flour kernels, fenugreek seeds, wheat (whole grains or parboiled grains), white wheat flour, defatted peanut flour, defatted sesame flour and dry yeast.

The protein content of such food mixtures ranged from 17.7 to 23.2 %, which is in agreement with recommended values.

Defatted sesame flour was incorporated in most of the mixtures in order to correct for their sulphur-containing amino-acids as it is already known that sesame is a rich source of sulphur-containing amino acids in comparison to other vegetable sources.

Further investigations are going on to determine the nutritive value of the formulated mixtures before feeding them to the children.

References

- Behar, M., W. Ascoli, N. S. Scrimshaw: Protein-calorie malnutrition. Bull. WHO 19, 1093 (1958).
- Subrahamanyan, V., R. K. Bhagaran, M. Swaninasthan: Indian J. Pediatrics 25, 216 (1958).
- Wishahy, A. G.: J. Egypt. Med. Assoc. 41, 433 (1958).
- 4. Zawahry, M. R., A. G. Wisahy: Egypt. Pharm. Bull. 42, 203 (1960).
- Tasker, P. K., K. Joseph, Roa M. Narayana, M. Swiminathan, V. Subrahamanyan: Amer. Biochem. 20, 37 (1962).
- 6. Dutra de Oliveira, J. E., Nelson de Souza, T. Alvez de Rezende: J. F. SC. 32, 131 (1967).

¹ Calculated by difference.

 $^{^{2}}$ By calculation; g carbohydrates = 4 cals., g protein = 4 cals. and g fat = 9 cals.

- 7. Swaminathan, M., V. A. Daniel, H. A. B. Papia: Ind. J. Nutr. Dietet. 9, 22 (1972).
- Book Walter, G., N. K. Warner, R. A. Anderson, E. B. Bangley: J. Food Sci. 44, 820 (1979).
- 9. Hanafy, M. M., A. H. Ibrahim, S. El-Khateeb: Alexandria Medical Journal 9 No. 6, 477 (1963).
- 10. Zawahry, M. R., A. Wishahy: The Egypt. Pharm. Bull. 79, 203 (1960).
- 11. Hanafy, M. M., M. K. Aref, Y. Seddik, M. S. Zein, K. M. El-Kashlan: J. of Tropical Med. and Hygiene 70, 238 (1967).
- 12. Hanafy, M. M., Y. Seddik: Alex. Med. J., 7 No. 6, 403 (1960).
- 13. Morcos, S. R., E. M. Hegazi, S. T. El-Damhougi: J. Sc. Fd. Agric. 24, 1153 (1973).
- 14. A.O.A.C., Official Methods of Analysis of the Association of Agricultural Chemists. 11th ed. (1970).
- 15. Kahan, N. A., E. J. Baker: J. Agric. Food chem. 3, 853 (1955).
- 16. Levy, A. L., D. Chang: Anal. chem. 25, 396 (1953).
- 17. Lewis, O. A. M.: Ph.D. Thesis, University of London. The estimation of amino acid composition of Dietary Protein (London 1961).
- 18. Lewis, O. A. M.: Nature 209, 1239 (1966).
- 19. Jamalian, J., P. L. Pellett: J. Sci. Fd. Agric. 19, 378 (1968).
- 20. Blauthi, J. O., M. Charazinski, H. Berbic: Analyt. Biochem. 6, 69 (1963).
- Gabrial, G. N., L. Hussein, S. R. Morcos: Qual. Plan. Pl. Fds. Hum. Nutr. 24, 61 (1974).
- 22. Gabrial, G. N., S. R. Morcos: Z. Ernährungswiss. 15, 333 (1976).
- 23. Morcos, S. R., G. N. Gabrial, M. A. El-Hafez: Z. Ernährungswiss. 15, 378 (1976).
- 24. Jaffe, W. G.: Arc. Venezolanos Nutri. 1, 108 (1950).
- 25. Report of FAO/CCTA Techn. Meeting on legumes in Agriculture and Human Nutrition in Africa, Bukavu, Belg. Congo (Rome 1958).
- 26. Gabrial, G. N.: Ph.D. Thesis, Fac. of Sci., Univ. of Cairo (1971).
- 27. Hussein, L., G. N. Gabrial, S. R. Morcos: J. Sci. Fd. Agric. 26, 1433 (1974).
- 28. WHO (1970), Consultation on Human testing of protein-rich foods, 9-11 March, 1970, Geneva, Nutritional report, 70 S.
- 29. FAO (1957), In: Protein requirements, FAO Nutr. Stud. No. 16.

Authors' address:

Dr. Gamal Nuob Gabrial, Food Science and Nutrition Research Department, National Research Centre, Dokki, Cairo (Egypt)